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Abstract 

Battery lifetime prognosis is a key requirement for successful market introduction of rechargeable Energy 

Storage Systems (ESS) based on lithium-ion (Li-ion) technology. In order to make decisions at the system 

design stage, a procedure for making efficient predictions of battery performance over time is necessary to 

be developed. 

In this paper, a general methodology for the evaluation of lifetime prediction is presented, covering the 

semi-empirical aging model precision and validity. Both calendar-life and cycle-life performance were 

investigated. Moreover, standing time and working operation were examined jointly using realistic 

operating profiles. The aim was the predictive model to be suitable for any application, including electric 

vehicle (EV), within the considered operating range. The efforts were especially focused on model 

ratification procedures and predictions goodness evaluation. The validation processes not only dealt with 

static impact factors evaluation but also with dynamic operation schemes. Besides, integration of ageing 

monitoring algorithm into Battery Management System (BMS) was evaluated. Battery pack design and 

operation strategies definition criteria were also discussed based on the stress factors influence on cell 

performance. The presented results correspond to a lithium iron phosphate (LFP) cathode 26650-size Li-ion 

cell.  
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1 Introduction 
Li-ion batteries are the leading candidate for EV 

and other transportation applications due to 

specially their high energy and power density. 

Ageing at cell level is one of the key issues for 

this technology based ESS improvement, as long 

lifespan is required for target applications (e.g. 10 

years for EV). It is therefore necessary 

establishing concise algorithms for long-term 
lifetime performance predictions based on 

short-term cell accelerated test data [1], as real 

operation condition tests are highly time and cost 

intensive. This research work aims to present an 

innovative methodology for the development of 

ageing models that simulate jointly cells standing 

time and working operation. The defined protocol 

pursues to come up with a compromise between 

the accuracy of the models and the experimental 

work to be carried out, focusing particularly in 

model ratification procedures. Not only are they 
based on additional tests under constant stress 
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conditions but also at dynamic operation schemes 

[2][3], as models needs to be extrapolated to any 

arbitrary real profile. So far, most of the ageing 

model validations are based on static impact 

factors evaluation [4][5]. Besides, reliable 

predictions needs of physical evidence so that 

degradation modes and cell performance are 

related over time, modelling this way ageing 

phenomena as accurate as possible. Additionally, 

taking into account the model precision according 

to the validation results, potential applications of 

the obtained lifetime prognosis mathematical 

models are to be discussed. 

The reference selected for the reported study was 

a commercially available LiFeOP4 (LFP)/graphite 

26650-size cell with 2.3Ah nominal capacity. 

Olivine-type lithium phosphate is one of the 

cathode materials of main interest for EV 

applications because of its safe performance, low 

cost, high specific power and high cycling 

capability. When it comes to the cell 

configuration, cylindrical casing is one of the 

most widely used packaging styles. 

2 Lifetime prognosis methodology 
Fig. 1 depicts the approach followed for ageing 

model development. The causes affecting ageing 

(stress or impact factors) and the measurement of 

their contribution to cell performance over time 

(ageing metrics) are outlined in Fig. 2. Influence 

of current rate (C-rate), State of Charge (SOC), 

Depth of Discharge (DOD) and temperature (T) in 

cell available capacity loss (Closs) and internal 

resistance (IR) increase, meaning loss in dynamic 

current capability (i.e. power fade) and relaxation 

ability, are necessary to simulate in order to 

control the battery operation and thus the costs 

(effective ageing). Overall, the process for 

batteries lifetime optimisation is: (i) investigation 

of the battery stress factors, (ii) battery ageing 

model building, (iii) validation of the ageing 

model and, lastly, (iv) the implementation of the 

model to meet the pursued goal (e.g. battery pack 

sizing, Total Costs of Ownership (TCO) 

estimation, integration of the ageing model in 

BMS together with the electrical and thermal 

performance models, etc). 

2.1 Experimental procedures  

Extended accelerated ageing tests were performed 

under static conditions. Key calendar and cyclic 

ageing impact factors were separated in order to 

parameterise derived single semi-empirical 

relationships.  Calendar  ageing  (Acal)  tests  were 

carried out at different temperatures and SOCs at 

open circuit (OC), considering that self-discharge 

is of minor importance below 100% SOC [6]. On 

the other hand, symmetric charge sustaining 

cycling   performance   (Acyc)  was  analysed  as  a  

 
Figure 1: Methodology for lifetime prognosis 

(ratification procedures in blue) 

 
Figure 2: Controllable factors inducing changes in cell 

performance (both while working operation and 

standing time) when it comes to the battery’s capacity 

and internal resistance  
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function of C-rates and DOD in accordance with 

the assumption made by other authors [7] [8] [9] 

that storage and cyclic ageing effects can be 

superimposed. That is to say: 

Acal= f (SOC, T, t)  (1) 

Acyc= f (DOD, C-rate, Ah-throughput)  (2) 

ATOTAL= Acal+Acyc= f (SOC, T, t, DOD, C-rate, Ah) (3) 

Apart from the factors that are under investigation 

in this paper, there are also other ones that 

contribute to the experiments. These may be 

gathered together into three main groups [10]: (i) 

uncontrollable factors such as cells variability, 

measurement error or ambient conditions 

(meaning humidity, pressure, etc.); (ii) nuisance 

factors, for instance Electrical Parameters 

Identification Tests (EPIT) schedule or cycling 

protocols change due to cell ageing; and (iii) 

factors that are considered constant: homogeneous 

temperature along the whole jelly-roll, 

conditioning procedure and so on. All these 

factors effect ought to be determined in order to 

assign an error to the precision of the predictions 

and extrapolations to the desired End of Life 

(EOL). Among others, cell-to-cell variations is an 

important factor, as single-cell experiments can 

strongly depend on the tested cell (i.e. influence 

on mean cell lifetime limits). This way, all the 

tests were run using cells of the same 

manufacturing batch which nominal capacity at 

the Beginning of Life (BOL) was 2.301±0.01Ah 

(95% confidence interval).  

On the other hand, experiments were carried out 

correcting set parameters values (SOC and DOD) 

according to cell’s actual capacity. In case the 

tests are done using always the same values, 

additional polarisation effects induced by a 

possible loss of active material show up in the 

data [11].  

Evolution of cell’s capacity and internal resistance 

were monitored for battery ageing model 

parameterisation by conducting the following 

intermittent EPIT at at room temperature (298K): 

(i) full charge-discharge cycles at nominal 

conditions (actual nominal capacity 

measurement), (ii) current pulses at cells 

maximum acceptable charge/discharge current 

rates over cell’s entire SOC range (actual IR 

measurement), (iii) Electrochemical Impedance 

Spectroscopy (EIS) measurements (impedance 

change evaluation) and (iv) cell full discharge at 

very low C-rate (quasi-Open Circuit Voltage 

(OCV) curves examination). Cell voltage 

responses progress was analysed in order to 

understand cell behaviour and degradation. 

Incremental Capacity (IC) and Differential 

Voltage (DV) curves are key tools for diagnostics 

(e.g. cell impedance changes and loss of both 

active material and cyclable lithium 

identifications). These Reference Performance 

Tests (RPT) were carefully planned so that their 

impact on cell degradation was as negligible as 

possible. 

In the present work, the EOL was defined to be 

reached when actual nominal capacity and IR 

were 80% and 200%, respectively, when 

normalised to initial values (i.e. increase of initial 

IR by a factor of 2). These limits were established 

in agreement with the most extended lifetime 

criteria for EVs.  

2.2 Accelerated ageing tests 

Many single-factorial variation experiments were 

carried out actively testing the external influence 

factors, which range limits were chosen within the 

cell operation window set by the manufacturer 

and taking also into account the cell behaviour 

observed during several screening initial tests. 

Nonetheless, temperature, SOC and C-rate outer 

limits were not checked since a real-life 

application may not work on them. Furthermore, 

effects of SOC and T as well as C-rate and DOD 

binary combinations were analysed at certain 

chosen levels. 

Table 1 shows the static accelerated ageing tests 

bench matrix that was planned according to the 

assumptions already mentioned (note that the 

defined static validation tests are also included on 

it). All the cycling tests were performed at 303K 

and 50% mean SOC (baseline temperature and 

voltage cycling conditions).  

Table 1: Test matrix for calendar and cyclic ageing 

models building and static validation (green ticks).  

FACTORS Levels 
30% 

SOC 

70% 

SOC 

90% 

SOC   

SOC & T 

303K 
 

X 
   

313K X X X 
  

323K 
 

X √ 
  

 
Levels 

5% 

DOD 

10% 

DOD 

30% 

DOD 

60% 

DOD 

100% 

DOD 

C-rate & 

DOD 

1C X X √ X X 

2C 
   

X 
 

3.5C 
 

X 
 

X 
 

NOTE: Cycling was always conducted at 303K and 50% mean SOC 
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2.3 Ageing modelling 

Ageing model was developed using a stress 

factors time-domain characterisation method, by 

capturing the dominant effects on cell 

performance degradation for fitting each single 

testing parameter. Fig. 4 depicts the approach 

followed for cell ageing prediction. This method 

uses and combines all possible key stress factors 

and provides cell State of Health (SOH) 

estimations beyond measured and simulated 

operating range and time. 

2.4 Model validation protocols  

Remarkable model ratification procedures (see 

Fig. 1) are additional accelerated tests at other 

static conditions, as indicated in Table 1 with 

green ticks, and also under dynamic ambient 

temperature, cycling current profile or even 

storing voltage bands, as depicted in Fig. 3. 

Moreover, cycling performance needs to be 

checked further so as to confirm the premise that 

the effect of SOC and temperature stress factors is 

the same during storage and operation.  

It is also essential to understand ageing modes in 

order to establish a clear evolution of battery life. 

That is to say, to identify temporal correlation 

between performance fade and degradation 

mechanisms in order to verify, by means of 

physical evidence, the long-term lifetime 

prediction algorithms that are to be established 

based on short-term cell test data. 

 
Figure 3: Validation tests 

3 Results and discussions 
In this section, results from accelerated ageing 

tests and modelling are presented together. 

Emphasis is set to describe the guidelines 

followed for the development of the models and 

the resulting lifetime predictions main issues. 

3.1 Model development  

Fig. 5, Fig. 6 and Fig. 7 show the experimental 

results of the evaluated ageing metrics together 

with   the   predictions,   which   correspond   with  

 
Figure 4: Ageing model. Available capacity and resistance offset prediction in response to time and controllable 

environmental influences (IR: Internal Resistance; C: Capacity; Cnom: Nominal capacity) 
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IRincrease =1.29∙1011 ∙exp(-9194/T)∙t (4) 
Closs_cal = 165400∙exp(-4148/T)∙exp(0.01∙SOC)∙t0.5 (5) 
Closs_cyc = (-0.14-0.08∙DOD+1.92∙DOD0.5-2.51∙ln(DOD))∙(0.48∙Crate2-2.42∙Crate+1.57)∙t0.8 (6) 

 
Figure 5: IR increase over time (a) during different cell 

operating conditions (cycling tests at different DOD 

and C-rates) and (b) as a function of temperature 

together with the developed model (Eq. (4)) 

simulations in dotted lines 

Eq. (4), Eq. (5) and Eq. (6) according to the best 

fitting results (0.904, 0.987 and 0.912 adjusted 

coefficient of determinations, respectively). 

EPIT demonstrated that the investigated LFP cell 

was aged primarily due to capacity fade rather 

than resistance increase as also reported by other 

authors [12] [13] [14]. An IR increase of just ca. 
15% was measured after 350 days at most 

demanding conditions. Besides, it bears 

mentioning that an unexpected slight initial 

diminution of IR (ca. 3%) was observed, in 

agreement with other studies with the same cell 

configuration [13] [14]. The impact of SOC, T, 

DOD and C-rate on cell internal resistance is 

analysed in Fig. 5, which represents the IR 

measured using a discharge pulse at 50% SOC. 

Regardless of this metric testing procedure, 

i.e. charge or discharge current step and reference 

voltage (Fig. 8 and Fig. 9, respectively), the 

measured trend was similar, which simplifies 

meaningfully the prediction models. Fig. 5 (a) 

shows that there is no dependency between IR and 

either SOC or DOD, and even C-rate. On the one 

 
Figure 6: Capacity loss during storage at different temperatures and 

SOCs. Test data and built model (Eq. (5)) results in dotted lines  

 
Figure 7: Continuous cycling time dependant capacity loss as a function 

of DOD and C-rate (303K, 50% mean SOC) over time. Experimental 

data and developed model (Eq. (6)) results in dotted lines
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hand, it was observed that the induced IR change 

during cell cycling (at any condition) and storage 

was apparently similar for the same operating 

temperature. It was therefore assumed that cycling 

does not accelerate this ageing metric change. On 

the other hand, calendar ageing experimental 

results indicated that the effect of standing SOC 

on IR increase was not assessable. Thus, it was 

just modelled the influence of temperature and 

standing time on IR increase (Eq. (4)), as plotted 

in Fig. 5 (b) (note that experimental data at 313K 

correspond to cells stored at different SOC). 

 
Figure 8: Current pulse EPIT results. DC Internal 

Resistance during charge and discharge at 50% SOC 

(cycling at 1C, 60% DOD, 50% mean SOC and 303K) 

 
Figure 9: Current pulse EPIT results. DC Internal 

Resistance during discharge as a function of current 

pulse applying cell’s SOC (cycling at 1C, 60% DOD, 

50% mean SOC and 303K) 

When it comes to the capacity loss, the effects of 

T, SOC and standing time are plotted in Fig. 6. 

On the one hand, parasitic chemical reactions 

followed an exponential relationship with 

temperature   according   to   Arrhenius  law.  The 

measured activation energy was 34.5±14.9kJ/mol 

(95% Confidence Interval), which corresponds 

with that reported by other authors [14] for the 

same cell configuration. Regarding voltage impact 

on cell’s capacity loss, which depends on cell 

cathode material, both linear [15] and exponential 

[16] evolutions were checked, being the latter the 

best fitting in all cases. Additionally, square root 

of time dependency was observed due to storage, 

which may be related to Solid Electrolyte 

Interface (SEI) layer increase over time as is 

typical for the cells containing carbon anode [17]. 

Overall, calendar ageing degradation modes may 

not change within the studied storing time frame 

(ca. a year) since the capacity loss evolution is 

stable over time (the error of the predictive model 

built after ca. 200 days of storing was reduced in 

a 0.32% when updating it after ca. a year, being at 

this time 0.99% the largest measured error). 

Accounting for capacity offset during cycling, the 

influence of DOD, C-rate and the amount of 

charge through the battery are evaluated in Fig. 7. 

The level of stress was, as expected, increased 

(t
0.8

) due to Ah-throughput. The results also 

indicate that there was little effect of cycling 

amplitude (DOD) on cell degradation rate, just 

like other authors also reported [18]. According to 

the developed predictive model, except for the 

specimens cycled at studied range limits (5% and 

100% DOD), the 20% capacity fade was reached 

more or less after the same total Ah-throughput 

regardless the DOD. Hence, the effect of cycling 

time (or Ah-throughput) was more significant 

than DOD. The degradation rate was 

slowed-down at low DOD (tests at 5% DOD are 

still ongoing so as to analyse this phenomenon 

more in depth). On the contrary, when cell cycling 

at the largest voltage range, i.e. 100% DOD, the 

capacity loss process was sped up appreciably 

after ca. 12500 Ah through the battery, which 

may indicate that the induced possible 

degradation modes change over time. Loss of 

Lithium Inventory (LLI) was identified to be 

apparently   the  only   degradation  mode  at   any  

 
Figure 10: Differential Voltage (DV) signatures from the initial state (in red) to ca. 13800 Ah-throughput 
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studied DOD but for 100% DOD when IC and 

DV curves (Fig. 10) were analysed. At 100% 

DOD, however, Loss of Active Material (LLA) 

was additionally revealed. Post-mortem analysis 

is being conducted in order to understand the 

influence of DOD and detected possible 

degradation modes change at 100% DOD. When 

analysing C-rate effect, comparing the results of 

the tests at 3.5 and 1C (both at 60% DOD), it was 

observed that the standing time induces more the 

capacity loss than the operating electric current 

[19]. Besides, not only seems not to be larger the 

degradation at larger C-rates, but there are 

complex non-linear combined effects of DOD 

and C-rate. Tests at 2C (60% DOD) indicate that 

the operating current effect can be simulated 

using polynomial mathematical relationships (i.e. 

the degradation rate was enhanced at the studied 

intermediate C-rate). Moreover, in case the cell 

was cycled at other DOD, even if it was smaller, 

e.g. 10% DOD and 3.5C, the capacity loss was 

larger. More data is however required to fully 

understand all these phenomena. 

All in all, single calendar and cycling models 

were built just considering the accelerated ageing 

time frame within which the induced degradation 

modes seemed to have kept the same. Once the 

degradation mechanisms are checked thoroughly 

and ratified by post-portem analysis, cell 

performance loss and degradation modes are to 

be simulated jointly over time. This way, model 

parameterisation step will be optimised and the 

predictions will be more reliable for the whole 

considered cell lifetime. Furthermore, due to the 

fact that the accelerated ageing tests are still 

ongoing, the presented cycling ageing model was 

developed using experimental data at different 

cell degradation rates. The aim was to at least 

estimate roughly and take into account single and 

combined effects of the studied factors. Hence, it 

cannot be left behind that these approximations 

enhance significantly the model error, since data 

at very short ageing periods were used (e.g. 2C & 

60% DOD as well as 3.5C & 10% DOD tests) 

and 0.8 root of time capacity loss dependency 

was observed when DOD effect was just 

evaluated. It means that the different effects were 

not equally quantified and thus the used fitting 

introduces large prediction errors at intermediate 

cycling amplitudes (an error of ca. 4% was 

reached for 60% DOD test. See Fig. 7). Different 

modelling errors are depicted in Fig. 11, which 

shows the predictions goodness when: (i) just 

considering a single impact factor using either 

experimental data after different testing time 

periods (sections b and f in Fig. 11), (ii) matching 

new data with the model built beforehand (section 

c in Fig. 11), and (iii) even considering single and 

combined effects of multiple stress factors using 

data at different testing time periods (section 

d+e+f in Fig. 11). It is this way needless to say 

that it is worth running the cycling tests until there 

is available significantly large amount of 

assessable data (compare sections c and f in 

Fig. 11) and even better until the defined EOL is 

reached in the case of cyclic ageing so that 

different effects can be simulated as accurate as 

possible taking into account the different 

degradation modes to the extent possible. 

 
Figure 11: Cyclic ageing model precision and 

trustworthiness taking into account different amount of 

experimental data over time 

3.2 Model validation 

Fig. 12 represents both static and dynamic 

accelerated calendar and cyclic ageing tests 

(Fig. 3) results with the corresponding models 

prediction according to Eq. (5) and Eq. (6), 

respectively. The method used for predicting the 

capacity loss at dynamic profiles took into account 

the ageing by former usage. This way, the residual 

capacity was used as reference point for further 

predictions at different operating parameters and 

not simply the operating time [20][21]. 

The validation tests are still ongoing but, at first 

glance, the built calendar and cycling single 

models apparently are able to forecast the capacity 

loss due to dynamic operating conditions with a 

maximum error of 0.9% and 1.2%, respectively 

(Fig. 12). The results of the additional cycling test 

at static conditions (30% DOD, 1C) showed 
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Figure 12: Calendar-life and cycle-life models static and dynamic verifications 

Closs=[165400∙exp(-4148/T)∙exp(0.01∙SOC)-B]∙t0.5+[(-0.14-0.08∙DOD+1.92∙DOD0.5-2.51∙ln(DOD))∙(0.48∙Crate2-2.42∙Crate+1.57)]∙t0.8 (7) 

that the fittings at intermediate cycling amplitudes 

do not quantify ca. 2.8% of the measured capacity 

loss after 150 days of cycling, which highlights, 

as explained in the previous section, that more 

data is required for different impact factors 

parameterisation. On the contrary, the calendar 

ageing model follows the trend observed at new 

ageing static conditions (maximum assessed error 

of 0.7%), which once again ratified that induced 

degradation modes during storage are stable over 

time within the studied impact factors’ level 

ranges. Anyway, for completing calendar ageing 

model verification, it is also to be evaluated the 

effect of aleatory SOC impact factor. 

Last step in the methodology for lifetime 

prognosis (Fig. 1) is the superimposition of all the 

effects of the different stress factors quantified 

separately during either cycling or standing 

operation and the evaluation of this latter 

combined model adaptability to arbitrary 

conditions. Fig. 13 shows the results obtained 

randomly performing a profile defined within the 

considered studied stress factors’ ranges (Fig. 3) 

and the corresponding predictions according to 

the model mathematically described in Eq. (7). 

Note that B factor in Eq. (7) corresponds to the 

capacity loss due to cell standing at 303K and 

50%SOC during cycling (all the single cycling 

tests were carried out at these conditions). Hence, 

the value for B will be 0.290 in case the cell is 

working. Otherwise, if the cell is just stored, B 

will not exist in Eq. (7). 

Maximum combined model’s predictive error was 

1.5%. The evaluated experimental results did not 

correspond to extended operating times, which 

ought to be carefully checked since the error is 

accumulative over time (it increased steadily from 

0.5% to 1.5% in 21 days).  

 
Figure 13: Model total validation. Dynamic DOD, 

C-rate, standing SOC, cell operating T and storing 

periods (outlined in Fig. 3) over time 

Dynamic validation of IR model is also required. 

Due to the fact that it was concluded that the main 

stressing factor in this case is the temperature, IR 

evolution ought to have been checked at different 

storing temperatures. Unfortunately, the obtained 

experimental results were not relevant, as even 

after 193 days of storing between 303 and 323K 

the cell’s IR was not increased (on the contrary, it 

was reduced). 

3.3 Model applicability 

Lifetime estimation algorithm could be potentially 

integrated in a BMS for SOH estimations. The 

developed ageing evaluation methodology enables 

deriving the SOH by monitoring either capacity or 

IR. The relevance of measuring and implementing 

these two ageing metrics depends on the target 

final application. For the specific cell 

configuration studied in this paper (LFP/graphite 

26650-size cell), the IR increase over time was 

not significant, so SOH estimation would be 

accomplished by just measuring the capacity fade. 

Nevertheless, evaluating accurately IR evolution 

gather importance in case it is pursued to 

implement it in a thermal model. The aim in this 

latter case would be determining the cooling 

system that could help: (i) controlling and slowing 



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  9 

down the degradation rate due to cell heating, and 

(ii) operating within the cell safe operating 

temperature window, preventing this way thermal 

failure to the extent possible. 

When it comes to the reliability of SOH 

predictions in a BMS, the estimations would be 

optimised in case other complementary 

techniques for measuring actual operating 

capacity were used. For instance, as shown in Fig. 

14, were the model updated systematically, the 

margin of error would be reduced from 1.5 to 

0.6% after 21 days of operation at realistic 

conditions (validation test shown in Fig. 13). 

Hence, using a predictor/corrector framework 

based on on-board measurements, battery 

operating and control strategies could be adjusted 

guaranteeing reliable battery prognosis. 

 
Figure 14: Capacity loss over time due to dynamic 

operating profile (outlined in Fig. 3), corresponding 

model prediction (Eq. (7)) and prediction corrected to 

the actual measured SOH 

Implementing the ageing model into simulating 

tools, as shown in Fig. 4, makes possible 

evaluating performance losses due to different 

operating conditions and thus determining the best 

operating ranges for the studied stress factors 

depending on the pursued goal (longest lifespan, 

reduction of costs, enhancement of safety and so 

on). In this sense, at the same time, in depth 

analysis of DOD influence on the total either 

number of cycles or Ah-throughput that a cell can 

provide over the whole lifetime can serve, for 

instance, as clue guideline for battery pack sizing. 

Fig. 15 shows the total Ah-throughput estimations 

(until 20% capacity loss EOL is reached) as a 

function of cycling DOD calculated using the 

built cycling model (Eq. (6)). For the studied cell 

case, the total Ah-throughput does not strongly 

depend on the cycling amplitude but for very 

small DOD (5%), so it is key reaching the 

compromise of minimising costs due to either 

getting a larger small amount of energy or 

reducing the battery pack size to a tenth within the 

similar total energy output range. All the more, it 

might be of interest to reduce the battery pack size 

to even a twentieth if it is taken into account, on 

the one hand, that cell materials and depreciation 

costs respectively mean 27% and 16% of the total 

cost of an EV battery pack [22] and, on the other 

hand, that 10 years of lifetime are required for EV 

applications.  

 
Figure 15: Estimations (according to Eq. (6)) of DOD 

dependant (cycling at 1C, mean 50% SOC and 30ºC) 

cell Ah-throughput during the defined whole lifetime. 

Make note that all the predictions were corrected 

according to the largest errors that were measured for 

each specific condition. 

4 Conclusions 

· It is feasible to build accurate ageing 

predictive models that simulate realistic 

operating profiles based on single cycling and 

calendar models. That is to say, storage and 

cyclic ageing effects can be apparently 

superimposed. 

· Calendar ageing seems to be stable over time. 

Hence, defining the End of Test (EOT) will 

be a trade-off solution between the 

experimental costs to cover and predictions 

precision required by the end user. 

However, cyclic ageing is tedious to predict: 

it is required impact factors effects 

combinations and over time induced 

degradation modes in depth analysis. 

· Static validations determine the precision of 

single impact factors parameterisation and 

provide useful guidelines for optimising or 

widening, if necessary, planned ageing test 

matrix.  

Dynamic validations, on the other hand, 

inform of the goodness of the predictions at 

aleatory operating conditions using models 

based on the evaluation of static impact 

factors. Not only do they strengthen the 

reliability and value of the predictions, but 

also enable sparing with time consuming and 

expensive ageing tests for models 
development. 
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· Diagnostics at dynamic conditions need to 

have into account the actualised SOH at all 

times, so monitoring the operating profile and 

updating the ageing model is a must in order 

that it can be implemented in a BMS. 

· The developed lifetime predictive model is 

useful for battery pack sizing within 

beforehand evaluable (using the same model) 

wide range of operating conditions.  
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