

The 27th INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION.

Barcelona, Spain 17th-20th November 2013

EUROLIS -

European lithium sulphur cells for automotive applications

Patrik Johansson^{1,2} and Robert Dominko^{2,3}

¹Department of Applied Physics, Chalmers University of Technology, SE-41296, Göteborg, Sweden, E-mail: patrik.johansson@chalmers.se

²Alistore-European Research Institute

³National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

Organized by

eurolis

Hosted by

In collaboration with

Why Li-S batteries?

P. G. Bruce et al. Nature materials 11 (2012) 19-29

Sulphur:

- 32.06 g/mol
- $2.07g/cm^{3}$

- Non-toxic, "green" material
- Abundant, cheap (28 US\$/ton)
- Theor. Cap.: 1,675 mAh/g

Cathode materials for LiB and Li-S

Material	Theoretical Capacity (mAhg ⁻¹)	Specific Capacity (mAhg ⁻¹)	Relative Price
LiCoO ₂	275	130-140	1
Li-NMC	~270	150-160	0.59
Li-NCA	~270	170-180	0.89
LiMn ₂ O ₄	148	100-120	0.26
LiFePO ₄	170	140-150	0.37
S	1675	200-1200	0.006

Organized by

Hosted by

In collaboration with

CVS 27

Basics of Li-S batteries

- @ Anode: 2Li => 2Li⁺ + 2e⁻
- @ Cathode: $S + 2e^{-} => S^{2-}$
- Overall: $2Li + S => Li_2S$
- Cell max: 2.15 V
- $Li_{(s)}$: 3,860 mAh/g
- $S_{8(s)}$: 1,675 mAh/g
- => 2567 Wh/kg & 2800 Wh/l
- Today: > 350 Wh/kg (cell)

Organized by

Hosted by

In collaboration with

Problems of Li-S batteries vs. Liion batteries

- S an insulator S/C composites
- Many many reactions...
- How to control the solubilities?
- Low C rates often C/10

$$S_8 + 16Li^+ + 16e^- \rightarrow 8Li_2S$$

$$4S_8^{2-} \rightarrow 4S_6^{2-} + S_8$$

 $2S_8^{2-} \rightarrow 2S_4^{2-} + S_8$
 $S_8^{2-} + S_6^{2-} \rightarrow 2S_3^{2-} + S_8$

$$S_6^{2-} \rightarrow 2S_3^{--}$$

 $S_6^{2-} + 2e^- \rightarrow 2S_3^{2-}$

$$S_3^{-} + e^- \rightarrow S_3^{2-}$$

 $2S_3^{2-} + e^- \rightarrow S_3^{2-}$

Organized by

Hosted by

In collaboration with

The Eurolis project

- "Advanced European lithium sulphur cells for automotive applications"
- FP7 Program: Theme 4 NMP Nanosciences, Nanotechnologies, Materials and New Production technologies
- GC.NMP.2012-1 Innovative automotive electrochemical storage applications based on nanotechnology, FP7-2012-GC-MATERIALS
- 1/10 2012 + 48 months, 3.8 M€

Organized by

Hosted by

In collaboration with

Eurolis Aims & Layout

- 500 Wh/kg & 1000 W/kg for normal operation.
- Charge eff. > 95 % (cycle life) & temp. range -25 +80 deg. C
- Durability for automotive industry; 5 years and 1000 cycles
- Safety standards and low costs: i.e. a maximum 150€/kWh

Organized by

Hosted by

In collaboration with

Eurolis Partners

- Coordination NIC Slovenia
- Battery SAFT
- Vehicles Renault, Volvo
- Basic research & development materials focus

Organized by

Hosted by

In collaboration with

Eurolis Approach to Li-S

- Composite cathodes to disperse S, high surface area of mesoporous C
- Functionalization of outer surface of C particles
- Alter the PS solubility via polymeric solvents and ionic liquids
- Look at life-cycle analysis, re-cycling and eco-design issues
- Create new analytical techniques for reliable monitoring of Li-S batteries
- Develop simulation approaches to Li-S electrolytes
- Aim at understanding the mechanisms needed for stable battery operation
- Compare alternative configurations of Li-S batteries

Organized by

Some 1st results...

 Δ V=1.5 V, C/10 rate, ion selective separator:

Hosted by

Some 1st results...

Interactions of solvent-PS complexes (A:S_x) with Li⁺

 $Li^+:TFSI^- + A:S_x^{2-} \rightarrow Li^+:A:S_x^{2-} + TFSI^-$; A = DIOX, DME, TMS

 $Li^{+}:TFSI^{-} + A^{+}:S_{x}^{2-} \rightarrow Li^{+}:A^{+}:S_{x}^{2-} + TFSI^{-}$; A = PYR13, PP13

Modelling development – pretty far from EV application...

Li-Solvent-PS complex, $Li^+:A:S_x^{2-}$ (x=2,4,6,8)

Organized by

Hosted by

In collaboration with

Questions & More information

- www.eurolis.eu
- patrik.johansson@chalmers.se
- robert.dominko@ki.si

Organized by

Hosted by

In collaboration with

