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Abstract 
Modelling and simulation have become inseparable activities in any applied science or engineering 

research and development endeavour. The nature of inseparability is even more evident in the case of the 

automotive industry. Adding to the modelling complexity are the electric vehicles with a rich interplay of 

previously well demarcated disciplines of electrical-electronics engineering and mechanical-automotive 

engineering (and to a lesser extent chemical engineering). A traditional internal combustion engine vehicle 

development program has very well segmented and well defined set of modelling and simulation activities. 

The modelling and simulation tools used are mature and have been tested and proven. However, an electric 

vehicle program often suffers if a decision to pursue the traditional approach is accepted. The complex 

interplay of different disciplines, the lack of expert/mature modelling and simulation tools and constantly 

changing landscape of electric vehicles tend to keep the electric vehicle modelling and simulation groups 

small, esoteric and often lacking in direction. In this work we define three guiding principles for a 

modelling and simulation group in the context of an electric vehicle development program. The interaction 

between three connected but dissimilar facets of modelling and simulation, i.e., vehicle level simulation, 

sub-system level modelling and simulation and model inspired in-vehicle algorithms are explored based on 

objectives that are defined before the start of the modelling and simulation exercise. The importance of 

finding the right common thread, model fidelity and continuous learning are discussed. 
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1 Introduction 
Modelling and simulation has been used for 
prediction, optimization and virtual 
experimentation for the past four to five decades, 
successfully, in the automotive industry. Topics 
ranging from determining the optimum vehicle 
shape with a goal of reducing the vehicle’s 
aerodynamic drag [1] to vehicle mechanical 
systems that optimize vehicle suspension [2] 

have been tackled comfortably and effectively 
using modelling and simulation tools. 

Before we embark on the title topic it is important 
that we distinguish between the terms ‘modelling’ 
and ‘simulation’. Modelling is defined as a 
mathematical construction or description of a 
physical system. Models can be used for prediction 
or analysis. Simulation is defined as an experiment 
of a test case on the available mathematical models 
[3]. Simulation activities usually follow the 
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modelling activities. Modelling typically requires 
in-depth technical domain expertise while many 
simulation activities do not require in-depth 
technical domain expertise (this is especially true 
while using off-the-shelf simulation software). In 
many programs, modelling and simulation are 
done concurrently and in many instances are 
defined as one activity in the vehicle 
development program. 

As described previously, there are many 
simulation tools that are available off-the-shelf 
for various aspects of vehicle design and 
analysis. For example, Altair Hyperworks(R) is 
used specifically for Computer Aided 
Engineering (CAE) activities [4]. This 
specialized tool is used in car programs to 
simulate effects of stress, fluid structure 
interactions, etc. Many times it is important to 
also have models developed in-house. This not 
only reduces the dependence on external 
software but also increases the IP value of the 
company. Developing vehicle preliminary 
requirements is one such activity where in-house 
specialised models play an important role in the 
vehicle development program. In-house models 
also form the link between objectives, model 
fidelity and tools used within a vehicle 
development program. 

Modelling and simulation has also become a 
complex activity with different fidelity levels or 
hierarchies of complexity. Going with the theme 
of the paper it is obvious that the objective of the 
modelling exercise would define the complexity 
or fidelity of the models used. It is common 
practice that vehicle level models are relatively 
low-fidelity and specific subsystem models are 
moderate to high fidelity. Again, the objectives 
of the vehicle development program and the 
modelling and simulation activity define the 
scope of fidelity. A rigorous discussion on the 
philosophy and trade-offs between different 
model fidelity is presented in section 3.2. 

With the resurgence of electric vehicles, the 
interaction between the electrical systems and the 
mechanical systems has become much more 
complex and the domain of modelling and 
simulation has blurred previously well 
demarcated disciplines. The understanding and 
ability to predict the behaviour of the interplay of 
battery dynamics, electric motor/drive system 
dynamics and vehicle dynamics has become 
important in developing better and more efficient 
electric vehicles. In this work we look at 
modelling and simulation from three different 

facets, i.e., vehicle level simulation, sub-system 
level modelling and simulation and model inspired 
in-car algorithms and try to collate and define a set 
of guiding principles for a modelling and 
simulation group within a context of an electric 
vehicle development program. 

2 Electric Vehicle Development 
Program: 

As with any typical vehicle development program, 
the electric vehicle development program consists 
roughly of the following activities in a similar 
order as seen in Table 1. 

Table 1.: Stages in a car development program 

 

 
Figure 1.: Stages in a car development program 

The different stages are depicted in Figure 1. With 
the introduction of the concept of systems 
engineering, methods and processes for machine 
development have become much more streamlined 
and efficient. Figure 1 depicts the major milestones 
in the Mahindra Reva Car Creation Process 

Stage No. Stages/Phases 
1 User/Market requirement studies 
2 Concept design 
3 Feasibility study 
4 Concept Prototype build 
5 First builds (alphas) 
6 Second builds (betas) 
7 Testing, validation and homologation 
8 Pre-production 
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(RCCP) of our in-house vehicle creation 
program. The various stages depicted in figure 1 
have different aspects of modelling and 
simulation associated with it. Each of the stages 
uses different Modelling and simulation 
activities, i.e., statistical, technical, techno-
commercial, etc... 

Stage 1 - User/Market requirement studies: 
Usually, statistical models are used to account for 
the current user demands, motivations and usage 
patterns to arrive at possible configuration of 
vehicles that might meet market or customer 
requirements. Although this stage does not 
require technical/engineering models, this stage 
provides the basis for most of the objectives that 
are passed down to the design phase. Top level 
vehicle specifications may be arrived at in this 
stage. In an electric vehicle program, models 
used in this stage may be of relatively low 
fidelity and use standard statistical tools. This 
stage also forms the interface between the 
research and development teams and the 
marketing/customer care teams. Some of the 
important parameters that are fed into stage 2 are 
expected range, speed and overall target cost of 
the vehicle to be designed.  

Stage 2 – Concept Design: This stage forms the 
bulk of the modelling and simulation activities. 
In an electric vehicle program this stage can be 
further divided into three categories (facets) that 
form the core of this article, i.e., vehicle design, 
subsystem design and in-vehicle algorithm 
designs. 

 The vehicle design phase involves virtual 
feasibility, component sizing simulations and 
virtual validation activities that have inputs 
from stage 1, i.e., user/market requirements. 
Models in this stage can vary from low-
fidelity to high-fidelity based on specific 
objectives. For a discussion on model 
fidelity the readers are directed to section 
3.2. 

 The second facet is vehicle sub-systems and 
their interactions. In an electric vehicle there 
are three main sub classifications, i.e., 
mechanical sub-systems, electrical 
subsystems and energy storage subsystems. 
It can be argued that the energy storage 
subsystem could be listed under electrical 
sub-systems but a clear demarcation allows 
for a robust understanding of the energy 
storage systems (it is noted that the system 
can be an energy conversion system as well, 
for example, fuel cells). Models in this phase 

tend to be moderate to high in fidelity. 
Objectives range from characterization to 
understanding fundamental physics of 
operations for extracting the most out of these 
sub-systems. It is interesting to note that based 
on the objective sub-system models can find 
their way into the vehicle level models and in-
vehicle algorithms. Again, for a discussion on 
model fidelity readers are directed to section 
3.2. 

 The third facet is in-vehicle algorithms. In-
vehicle algorithms find application from 
vehicle functioning, monitoring and safety. 
Most of the algorithms that form the 
functioning part are inspired either in part or in 
full from sub-system models. 

Stage 3 – Feasibility studies form a very important 
part of any vehicle development program more so 
for an electric vehicle program. The studies, 
traditionally, are done as pre-alpha builds but of-
late the use of virtual feasibility/validation have 
become more prevalent. Feedback from this stage 
is considered critical for the success of any vehicle 
program. 

Stage 4 – Concept prototypes can be either virtual 
or vehicle builds. In the case of virtual prototypes, 
the interaction of subsystems and their effect on 
the vehicle are usually assessed. The topic of 
virtual prototyping of the electric vehicles are still 
quite nascent. 

Stages 5 & 6 – The alpha and beta builds are 
dominantly hands-on building of vehicles with 
input from the initial stages. Feedback from these 
stages forms an excellent base for continuous 
learning for the modelling and simulation 
activities. The nascent nature of the electric vehicle 
technology provides excellent opportunities for 
learning and in turn improvements to the design. 
Section 3.3 attempts to describe this process in a 
little more detail. 

Stage 7 – In any vehicle development program, the 
testing, validation and homologation forms the 
most expensive, time consuming and labour 
intensive set of activities. Subsystem models can 
be tested and validated virtually as a result of 
which time, cost and labour can be reduced. The 
model fidelity of subsystems in such cases needs to 
be moderate to high.  

Typically, modelling and simulation efforts start as 
part of the feasibility study. In recent years it is 
also common to perform simulations at the concept 
design and market requirement activity stages. 
Feedback from various phases after the feasibility 
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study activity into the modelling and simulation 
activity has also become common place. 

3 Guiding Principles: 
The following three guiding principles are 
arrived at after a lot of iterations and feedback. 

3.1 Principle-1.: Different Goals, 
Common threads: 

We look at three different facets that serve 
different end goals but they also share common 
threads: 1. Vehicle level simulation, 2. Electric 
Vehicle sub-system modelling and simulation 
and 3. In-car algorithms derived or inspired from 
modelling and simulation results. Figure 1 
depicts the overlapping nature of the three facets. 

 
Figure 2.: Figurative description of the overlapping 

nature of levels of modelling and simulation in a 
vehicle. 

Vehicle level simulations or vehicle performance 
simulators are top level simulations that are 
required to create a benchmark value for the 
vehicle specifications. Vehicle specifications 
may include range, top speed, acceleration, 
battery sizing, etc. Most of the vehicle level 
simulations are based on simple physics and tend 
to be relatively low-fidelity. A variety of vehicle 
simulators for both electric and hybrid electric 
vehicles are available in the market; examples of 
industry benchmarks would be Autonomie [5] 
(formerly, PSAT) from Argonne National Labs 
and Cruise [6] from AVL. Mahindra Reva also 
uses an in-house developed graphical block 
vehicle level simulator on the Matlab-Simulink 
platform [7]. 

Sub system modelling and simulation very often 
require detailed models and often predict 
combinations of complex physical phenomena. A 
good example for an electric vehicle sub-system 
is the battery and the battery management 
associated with them.  

In-car algorithms can vary in functioning 
complexity depending on the available computing 
power on-board. Most often they are 
simplifications or linearization of sub-system 
models. An example of algorithms derived or 
inspired from sub-system models is the State-of-
Charge algorithm. Figure 3 depicts a start-to-end 
objective based activity. The common threads 
most often are the objectives set forth by the 
vehicle development program and the goals vary 
based on the complexity of the models used. This 
leads us to the next section. 

 
Figure 3.: Flow chart depicting Start-to-End activity 

based on defined objective. 
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3.2 Principle-2.: Model Fidelity, less is 
more or more is not enough? 

A topic of deliberation in the field of modelling 
and simulation, trade-offs associated with results 
from models with different levels of fidelity form 
the basis for this section. It is important to have 
models of varying degrees of fidelity to serve 
different objectives, usually fundamental physics 
based models and component level models tend 
to be of higher fidelity than system level models. 
For an exhaustive list of modelling and 
simulation definitions the readers are directed to 
a review by Prof. Tuncer Oren [8]. It is proposed 
to adopt a balanced approach with respect to 
model fidelity during the modelling and 
simulation activity in an EV development 
program in light of the objectives defined. Figure 
4 proposes a generic method to decide model 
fidelity for different objectives. 

Most academic and scientific research has gone 
into quantifying errors and uncertainties in model 
prediction [9-11] focusing solely on how good 
the accuracy of the model is. In his book, 
introduction to physical system modelling [12], 
Prof. Peter E. Wellstead classifies models into, 
intuitive models, simulation models, dynamic 
models and actual system models based on their 
decreasing order of approximation. Simulation 
models are used for empirical investigation of 
properties and dynamic models are used for 
control analysis and design. Using Prof. 
Wellstead’s classification we then organize our 
objectives into two categories, 1. Property 
investigations, 2. Control analysis and design. 
Having established an objective and its 
classification, we now narrow down the fidelity 
of the model. This would be an easy task if we 
had one model to use but it is becoming 
increasingly prevalent to have at our disposal 
multiple models with varying levels of fidelity. A 
decision making framework for management of 
models needs to be in place. 

The aircraft industry uses one such framework 
called AMMO or Approximation and Model 
Management Optimization [13]. Usually used for 
design optimization, AMMO is a framework that 
maximizes the use of lower-fidelity, cheaper 
models in iterative procedures with occasional, 
but systematic, recourse to higher-fidelity, more 
expensive models for monitoring the progress of 
design optimization. The main objective of 
AMMO is therefore reducing the computation 
time while making sure that the design is 

optimized and error free. It is of importance to note 
that the aerospace and aircraft industries have 
tighter tolerances when compared to the 
automotive industry. 

 

  
Figure 4.: Generic method to decide model fidelity. 

For the automotive industry one is referred to the 
reviews by Massimiliano Gobbi and co-workers 
[14,15]. They categorize objectives for optimum 
design of vehicle and vehicular sub-systems as 
follows: 
1. Vehicle System Dynamics 
2. Powertrain Design 
3. Internal Combustion Engine Design 
4. Active Safety and Ride Comfort 
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5. Vehicle System design and lightweight 
structures 

6. Integration of vehicle electronic controls. 

We modify this set of objectives proposed by 
Gobbi and co-workers for an electric vehicle 
program as follows: 
1. Vehicle System Dynamics 
2. Drivetrain Design: Motor, gearbox and drive 

related electronics 
3. Energy Storage Systems: Batteries, Fuel 

Cells 
4. Active Safety and Ride Comfort 
5. Vehicle System Design and Lightweight 

Structures 
6. Integration of Vehicle Electronics Controls 

Analytical Target Cascading is used in the 
automotive industry in product development with 
a systematic effort to propagate the desired top-
level system design targets to appropriate 
specifications for subsystems and components in 
a consistent and efficient manner [16]. Elsewhere 
trade-off models for multi-attribute system level 
decision making is presented [17]. Combining 
work of Wellstead and Gobbi we reformulate 
figure 3 as follows: 
 

 
Figure 5.: Reformulation of the generic method shown 

in figure 4. 

In figure 5, the activity of model verification is 
the next topic of discussion. Apart from the 
model management part, tremendous amount of 
work has also gone into model order and fidelity 
reduction without sacrificing accuracy of the 
models. For example, work by Subramanian and 

co-workers [18], Seshadri and co-workers [19], 
Moura and co-workers [20] on Lithium Ion battery 
electrochemical model reformulation throws light 
on the importance of having different model 
fidelities for different objectives. Models are only 
as good as their accuracy which brings us to the 
discussion in the next section. 

3.3 Principle-3.: Adapting and 
continuous learning: 

As more data is made available, especially, from 
long term testing it is important to subscribe to a 
view of continuous improvement to the models. 
Improvements, among other things, include adding 
new physics features or removing features that are 
otherwise proving redundant. A judicious call and 
filtering mechanism needs to be built in to the 
feedback process such that relevant and important 
information and ideas are captured and represented 
by the models. 

In our opinion and practice these models have 
three underlying aspects that need to be considered 
when it comes to adapting and continuous 
learning, they are: 

1. The models need to be modular in nature. A 
plug-and-play architecture needs to be 
subscribed to. 

2. A motif of continuous improvement of models 
as a result of availability of more specialized 
datasets needs to be in place. The 
improvements can be both for low-fi and hi-fi 
models and can separately make the model 
generic or specific. 

3. The model backbone needs to be future proof. 
This means that activities like confirmation to 
emerging standards, physics, etc. will need to 
be easily incorporated. 

In the previous section, we briefly mentioned 
about the model validation and verification. The 
expected outcome of the validation and 
verification process is the quantified level of 
agreement between experimental data and model 
prediction, as well as the predictive accuracy of the 
models [21,22]. By definition, verification is the 
process of determining that a model 
implementation accurately represents the 
designers’ conceptual description of the model and 
the solution to the model. By definition, validation 
is the process of determining the degree to which a 
model is an accurate representation of the real 
world from the perspective of the intended uses of 
the model. It is of critical importance therefore that 
the data sets being used to validate the models also 
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vary in their fidelity. For example, vehicle level 
data would form a very abstract layer of data 
with the number of unknown parameters being 
quite large. A low-fi model may not pass 
validation with this data set and would therefore 
necessitate a high fidelity model. It is of interest 
to note that most model validation and 
verification is done with very abstract data with 
varying parameters. This brings about the 
important aspect of model uncertainty [23]. 
Uncertainty can be caused by many factors 
including: initial conditions, level of fidelity, 
numerical accuracy, multi-scale phenomena, 
parametric settings, etc. Clearly, as in the 
previous section, a well defined objective will 
reduce the uncertainty levels in the models. 

4 And finally ... 
Figure 6 shows a formalism of the ideology 
proposed in the paper. 

 
Figure 6.: Flow chart formalism of the Ideology 

presented in the article. 

When looking at the domain of modelling and 
simulation, it is obvious that in an electric 
vehicle program one has to have clear set 
objectives. It is also important to note that the 
activity of modelling and simulation often 
intersects the vehicle domain, sub-system domain 
and could inspire in-vehicle algorithms. This 
intersection of domains causes goals to be 
multifaceted with a common thread. A 
philosophy of objective selection is provided 
herein where one could navigate the maze of 
model fidelity. The important activity of model 
validation and verification forms the core of a 
vehicle programs’ success in the field, it also 
forms the crucial link between the virtual 
experimentation and the real world. Electric 
vehicle programs are still quite naive in maturity 
when compared to regular vehicle development 

programs. The current work aims to ‘stitch 
together’ the loose ends in the simulation 
framework for electric vehicles and formulate a 
cohesive approach directed at achieving the 
objectives. 
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