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Abstract 

A technique capable of identifying electric vehicle (EV) mass in real-time has been a topic of research for 

several years due to the advantages it presents, such as the ability to dramatically improve range estimates, 

perform more effective torque vectoring for ABS/ESC, track delivery vehicle weight, etc.. Some crucial 

issues in mass identification impede an easy implementation of such an algorithm, however, and this work 

introduces a simple method to calculate EV mass on-the-fly using standard data available on most CAN 

buses and therefore without the need of additional sensors. The results presented here are achieved using an 

eight step technique suitable for accurate mass estimations during wide-open-throttle acceleration events. 

The algorithm’s instantaneous error is less than 10%, and converges to better than 3% absolute accuracy 

performance with subsequent measurements. A preliminary analysis of trips lacking hard acceleration 

presented in this paper show an inability to differentiate between loaded and unloaded conditions. 
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1 Introduction 
Much attention has been given to the problem of 

identifying vehicle loss parameters, particularly 

vehicle mass. Notable previous work has 

attempted to fit parameters from linear dynamics 

and powertrain models using least-squares [1], 

[2] and more exotic and complicated methods 

[3], [4].  This work extends previous work 

presented by the authors pushing the state-of-the-

art of identifying electric vehicle mass in real-

time [5]. The streamlined approach sacrifices 

some accuracy for computational efficiency, but 

by collecting large volumes of data the algorithm 

converges to reasonable estimates. The methods 

presented can be used to increase the accuracy of 

electric vehicle distance-to-empty estimates, 

improve ABS/ESC control performance, enable 

fleet managers to have greater insight into the 
current state of their fleet, as well as to enable car 

sharing agencies to track customer usage to 

provide a higher level of service. 

 

Figure1: The Mitsubishi iMiEV test vehicle 

The test vehicle used in this work is a 2011 

Mitsubishi iMiEV, similar to the vehicle shown in 

Figure 1. The manufacturer’s specifications for the 

test vehicle are summarized in Table 1.  
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Table 1: Physical characteristics of the test vehicle 

Curb weight 1120 kg 

Battery capacity 16 kWh 

Battery chemistry Li-Ion 

Maximum range 100 km (US EPA) 

Maximum speed 130 km/h 

Motor Power (peak) 47 kW 

Motor efficiency (mean) 80% 

Motor Torque (peak) 180 N-m 

Tires P145/65R15 BSW 

 

2 Methods 
The strength of the approach presented in this 

paper is its dependence on minimal amounts of 

data. In theory, only motor power and vehicle 

speed signals are required to perform the mass 

identification. In practice, however, three signals 

are required because of how the vehicle’s CAN 

bus is structured: motor current (A), motor 

voltage (V), and vehicle speed (km/h) are used. 

 

A simple but effective algorithm for determining 

vehicle mass in real-time using CAN parameters 

was developed, and proceeds by: 

 

1. Calculating power and acceleration 

from P=I·V and  ̈  
  

  
, 

2. smoothing the data using a rolling 

average of N samples (where N is 

often heuristically chosen to be 

between 20-50 for power, and between 

5-10 for acceleration), 

3. finding events where power demand is 

positive and stable (within +/- 3.5 kW 

bounds) for a period of N*=10 

samples, 

4. checking that the velocity/acceleration 

signals are consistent with the constant 

torque events (within +3 and 0.5 m/s
2
 

bounds) for a period of N*=20 

samples, 

5. and, if the torque and acceleration data 

has reached steady state over a 

common period in the trip,  

6. the force       applied to road from 

motor power and gear ratio is 

calculated using Equation 1 (where 

motor torque   is multiplied by gear 

ratio and divided by the radius of the 

wheel    , 

7. and finally by the calculating of mass 

        using Equation 2 (Newton’s 

second law), 

8. The identified masses are checked for 

compliance with physical parameter 

limits outlined in Table 2. 

      
   

  
     (1) 

 

       
     

 ̈
    (2) 

 

It is assumed that the drivetrain efficiency retains 

the constant value given outlined in Table 1, which 

surprisingly does not corrupt the accuracy of the 

mass measurement. 

 

To account for the ‘apparent mass’ which is 

impedes acceleration, the equivalent mass of the 

vehicle mequiv is used throughout this work and is 

reported simply as mass in all of the results. This 

mass, calculated in Equation 3, is due to the 

inertial forces imbued by rotating parts (tires, 

motor etc.) and is a factor which increases the 

vehicle’s apparent curb weight. The fixed gear 

reduction coefficient G has a value of 7.6 which 

was calculated from comparing measured vehicle 

speed and motor RPM. This equation makes 

several simplifications, and its heuristic 

assumptions are discussed in detail in [6], [7]. 

                              (3) 

In order to examine how the mass estimate settles 

to a value under different test conditions (i.e. 

different passenger configurations), the cumulative 

mean for the test run      is calculated using 

Equation 4. 

 

        
 

 
∑          

 

   
  (4) 

 

The parsing of the mass estimates in step 8 of the 

algorithm is performed using the conditions of 

physical realizability in Table 2. It is important to 

note that these conditions exceed manufacturer 

specifications in all cases except for mass bounds, 

which are held at the Gross Vehicle Mass which 

the manufacturer specifies. 
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Table 2: Physical limits used to parse mass estimates 

Parameter Max Min 

Acceleration (m/s2) 2.7 0 

Power (kW) 60 0 

Torque (N-m) 220 0 

Mass (kg) 

Apparent mass (kg) 

1520 

(1958) 

1125 

(1450) 

 

Throughout the following section, the data for 

which results will be discussed  come from two 

main trials, and are labeled as such: 

 

A) Controlled on-road tests under wide-

open-throttle conditions with 

i. Driver only 

ii. Driver and one passenger 

B) Real-world driving with  

i. Driver only 

ii. Full vehicle (3 passengers) 

The source code used to generate the results in 

the following section will be made freely 

available upon request. 

3 Results and Discussion 
The following results are all based on data set A. 

Note that all results are expressed in ‘apparent 

mass’, and to convert to static mass, Equation 3 

can be used reformulated and used. 

 

Acceleration events for a 5 minute long trip are 

identified as shown in Figure 2. Pane a) shows 

the entire trip for trial A)ii., and Pane b) shows a 

single acceleration event in detail for trial A)i. 

Both trips were controlled tests of the algorithms, 

and were meant to contain four explicit 

acceleration events. It is clear from Pane a) that 

many more accelerations were in fact captured, 

and Pane b) illustrates how steady-state mass 

estimates are obtained as the force and 

acceleration reach their asymptotic values. 

 

 
 

 

Figure 2: Mass identification using acceleration and 

torque. Pane a) an entire test run for A)ii. with 4 

accelerations. Pane b) detail of the third acceleration 

event in trial A)i. 

 

In step 8, the algorithm excludes events based on 

physical constraints. The limits are most often 

violated are outlined in Table 3, and for Trial A)ii. 

over 75% of all of the identified 

acceleration/torque events for which mass was 

calculated were excluded, mostly because they 

resulted in a physically impossible mass. 

 

Table 3: Number of physical constraint violations for 

two trials 

Trial Accel. Power Torq. Mass 

A) i. 4 0 78 234 

A) ii. 8 0 75 174 

 

The implications of this exclusion step may be 

visualized clearly in Figure 3, where it can be seen 

that many identified masses do not conform basic 

physical constraints and can hence be safely 

excluded. 
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Figure 3: Identified masses are parsed to plausible 

masses by filtering them through physical constraints. 

Pane a) all data for test  A)ii. Pane b) zoomed in on 

one segment of test A)i.  

 

The convergence of mass estimates using 

Equation 4 is shown in Figure 4. With an 

increasing number of measurements, the steady-

state estimation for trial A)i. has a mean error of 

2.3% and the trial A)ii. has a mean error of -2.4% 

as is shown in Figure 5. 

 

 

 

Figure 4: The mass for driver-only trial A)i. is slightly 

overestimated (2.3% error), and the mass for trial A)ii. 

is slightly underestimated (-2.7% error) 

 

It is important to note that the variance for the 

error is high, at roughly +/-10% for both trials 

shown in Figure 5, and this has been identified as 

an area of future work. It is likely that this variance 

can be improved by applying a more complex 

approach to error minimization, for example by 

applying a minimum mean square error estimator. 

 

 

Figure 5: A high variance in the error is noted for both 

trial A)i. and trial A)ii. 

3.1 Real-world driving 

The results discussed in this short section are based 

on data from real-world driving collected in Set B 

which consists of long real-world trips (averaging 

20 minutes) where no special attempts were made 

to do wide-open-throttle acceleration. No 

discernible difference between loaded and 

unloaded conditions as shown in Figure 6, where 

the mean identified mass for six trips are shown. It 

is hypothesized that while the added mass for the 

full condition is significant, without hard 

acceleration the current algorithm is confounded. 
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Figure 6: No perceivable difference in mass for long 

trips with real-world driving, as seen by plotting mean 

identified mass for 3 trips under condition B)i. 

(empty) and 3 trips under condition B)ii. (full) 

3.2 Impact of mass on range 

Many methods exist to predict electric vehicle 

‘distance to empty’ (DTE) formulated in 

Equation 5, where Eb is the energy in the battery, 

and  ̅  is the mean consumption of the vehicle 

over a specific time interval.  

 

       
     

 ̅    
    (5) 

 

They can be broadly classified as estimators 

based on previous consumption, and methods 

which try and predict route and energy 

consumption through physics-based models. To 

illustrate the importance of real-time mass 

estimation for electric vehicle range prediction, 

four methods are contrasted: 

 

1. Plong – uses the mean power  

consumption over a long time window 

( ̅     averaged over 300km) 

2. Pshort- uses a shorter time window 

( ̅     averaged over 30km) 

3. Pblend – uses a blend of long/short 

 ̅      averages (20/80 in this case) 

4. Feedback – tracks actual DTE via a PI 

controller, and uses some smoothing 

factors to minimize driver startle 

5. Pblend + model – uses the blended 

algorithm combined with the identified 

estimate of vehicle mass 

Figure 7 shows how the various algorithms 

compare with one another. The method which 

incorporates a real-time estimate of vehicle mass 

performs the most accurately, after the feedback 

estimator. 

 

Figure 7: comparison of distance to empty estimators, 

with a passenger joining at the 10 km mark.  

While the error for the blended and modelled 

algorithm shown in Figure 8 is higher than for the 

‘Feedback’ method, its dynamic characteristic seen 

in Figure 7 results in undesirable driver startle. 

This must be weighed against absolute error. 

 

 

 

Figure 8: A comparison of the squared and cumulative 

squared error demonstrates the advantage of adding the 

model to the DTE estimate. 

The model adds useful precision, as seen in the 

zoomed perspective of Figure 9. 
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Figure 9: A detailed look at the last few km of the 

DTE highlighting the advantage of mass estimates. 

4 Conclusions 
The conclusions reached in this work are that: 

 

1. Mass can be calculated to an acceptable 

accuracy in real-time using Newton’s 

second law and efficient signal analysis, 

2. For wide-open throttle events, mass can 

be estimated with +/- 3% accuracy, 

3. For non-specific acceleration trials with 

real-world driving, algorithm accuracy 

degrades to +/- 10% (about +/- one 

passenger), and does not reach the level 

of accuracy required for individual 

passenger identification, 

4. The application of real-time mass 

identification can substantially improve 

distance-to-empty estimates for EV’s. 
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