The 27th INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION.

> Barcelona, Spain 17th-20th November 2013

Electric vehicle adopters' motivation, utilization patterns and environmental impacts: A Lisbon case study

Catarina Rolim¹, Patrícia Baptista¹, Tiago Farias¹, Óscar Rodrigues²

¹IDMEC - Instituto Superior Técnico, Universidade de Lisboa,

Av. Rovisco Pais, 1 - 1049-001 Lisboa – Portugal

²EMEL- Empresa Municipal de Mobilidade e Estacionamento de Lisboa, Lisboa, Portugal

OCS27Project: EV monitoring
Green Parking Permit

 Promoted by EMEL – Lisbon's municipal mobility and parking company

• The recruitment of the participants was conducted with the dissemination among electric vehicle private users.

Introduction

- Transportation sector faces constant pressure to reduce fossil fuel dependency;
- Solutions to overcome this trend:
 - Change travel behavior (shift to public transportation, share car, etc.)
 - New fuels (biofuel, electricity, hydrogen, etc.)
 - Alternative vehicle technologies (electric, hybrid, etc.)
- What will be the new challenges in peoples' lives when adopting alternative vehicle technologies?

Introduction

- New challenges:
- What are the impacts of alternative vehicle technologies in people's travel behavior, driving patterns, safety performance and environmental impacts?
- What will be the users' vehicle recharging, interaction with infrastructure and management?
- How and what will change in peoples' mobility and driving patterns?

- Evaluate user's satisfaction and adaptation to an alternative vehicle technology, this case the Electric Vehicle (EV):
 - Driving behavior;
 - Mobility Patterns;
 - Satisfaction and Comfort;
 - Recharging routines;
 - Interaction with Infra-structure.
- Quantify potential environmental impact:
 - Energy consumption;
 - CO₂ emissions.

1. Conditions for participants:

- Full electric vehicles;
- Participate in interviews and surveys during the project;
- Collect data regarding vehicle recharging and operation;
- Parking permit allowing drivers to park in Lisbon for free during the project;

Methodology

Nissan Leaf

Smart EV

Goupil

Renault Fluence

Think

OF 3

Methodology

3. Interview:

- Private drivers and fleet drivers;
- Composed by 20 to 28 open-ended questions;
- Focused on aspects: motivation to use, vehicle advantages and disadvantages, driving behavior, mobility patterns, charging routines, improvements and expectations;
- Taped and transcript was made;
- Qualitative analysis and several answer categories were created for each theme.

3. Energy meter

- Given to drivers to collect recharging data;

4. On-board diary

- Monitoring period between 3 to 10 months;

Data	Kms percorridos	Kwh abastecidos	Nº de viagens efectuadas	Observações

5. Participants

- Private drivers:
 - Use vehicle daily for different purposes
- Fleet drivers:
 - Use vehicle as a working instrument;
 - Use vehicle daily
 - Use vehicle rarely

Methodology

5. Participants

Private: 13 drivers

Private Users' Charaterization			
Male	10		
Female	3		
Average age	49,2		
Average Driving experience	29,9		
Brand of vehicle (number of users)			
Electric Vehicle - Nissan Leaf	9		
Electric Vehicle Renault Fluence	1		
Electric Vehicle Mitshubishi Imiev	1		
Electric Vehicle - Other	2		
Ownership and usage			
Vehicle possession (average months)	12		
Conventional vehicle ownership	1,7		

Fleet: 13 drivers

Fleet Drivers' Charaterization			
Male	11		
Female	1		
Average Age	37.4		
Average Driving experience	19.6		
Brand of vehide			
Electric Vehide Smart	11		
Electric Vehide Mtshubishi Imiev	11		
Electric Vehide - Other	3		

Results

- 1. Interviews
 - Private drivers vs. Fleet drivers
- 2. On-board diary data
 - Private drivers
 - Mobility profile
 - Environmental impacts

1.1. Factors influencing purchase

Factors influencing purchase	Private users	Factors influencing purchase	Fleet users
Environmental	62%	Environmental	75%
Economic	62%	Image status	33%
Professional	8%	Economic	25%
Changes in personal life	8%	Type of trips	25%
Interest in the technology	8%	1	
None	8%		

- Environmental and economic (energy cost and running costs) stand out as the main motives for private users to acquire an EV.
- For fleet drivers, image status stands out as an important factor influencing companies EV purchase

1.2. EV advantages and disadvantages

UVS 27

	Private	Fleet		Private	Fleet
Advantages EV	users	users	Disadvantages EV	users	users
Economic	85%	8%	Autonomy	77%	83%
Driving comfort	77%	50%	Charging infra-structure	15%	25%
Environmental	46%	67%	Purchase cost	15%	33%
Fossil fuels independence	23%	0%	Vehicle design	15%	0%
Vehicle design	8%	33%	Vehicle safety	8%	8%
Safety	8%	0%	Vehicle speed	0%	17%
Vehicle Power	0%	25%	Absence of vehicle noise	0%	17%
			None	8%	8%

- Private users mention economic, driving comfort and environmental factors as main advantages;
- Fleet drivers consider environmental and driving comfort as main EV advantages;
- Autonomy, charging infrastructure and purchase cost are main disadvantages of EV.

evs 27 Results - Interviews

1.3. Perceived differences between EV and ICE

Differences between driving EV and ICE	Private users	Fleet users
No trips to gas station	31%	25%
Alert of estimated available autonomy in EV dashboard	31%	8%
EV driving smoothness	23%	33%
EV higher vehicle power	23%	8%
No gear changes in the EV	15%	8%
EVs less running costs	15%	0%
EV doesn't use fossil fuels	8%	0%
EV smaller size	8%	0%
Different trip management with EV	0%	17%
Need to search for charging station with EV	0%	8%
None	0%	33%

- Main differences for private drivers are: no trips to gas station and existence of autonomy alert;
- For fleet drivers, driving smoothness stands out as main difference.

1.4. Impacts of EV on mobility routines

Impacts on everyday mobility routines	Private users	Fleet users
No	54%	50%
Yes	46%	50%
Changes observed in mobility routines		
More trips with the EV	67%	0%
Different type of road	50%	0%
Different trip management	50%	100%
Higher number of persons aboard	17%	0%

- Private and fleet drivers consider that the EV has an impact on their daily routines;
- Private drivers make more trips, drive in different road types, and have manage their trips differently
- Fleet drivers make a different trip management with the EV

1.5. Impacts of EV on driving style

Impacts on driving style	Private users	Fleet users
No	31%	33%
Yes Changes observed in driving style	69%	67%
Less speed	78%	17%
Less aggressive driving	22%	25%
More efficient driving More aggressive	17%	25%
driving	0%	38%

- Private drivers consider that their driving style changed: speed less, are less aggressive and drive more efficiently;
- As opposed to private drivers, 38% of fleet drivers consider that their driving style becomes more aggressive when driving the EV.

1.6. Mobility patterns

Mobility Patterns	Private users	Mobility Patterns	Fleet users
Commute to work/school	85%	Short trips (0-15km)	100%
Errands	54%	Medium trips (16-40 km)	8%
Urban	62%	Urban	92%
Inter-urban	38%	Inter-urban	17%
7 days a week	100%	One day per week	83%
		Several days per week	42%

- Private drivers use the vehicle essentially to commute, mainly in urban areas;
- Fleet drivers make small trips with EV, also in urban areas and use the vehicle one day per week.

CVS 27 Results - Interviews 1.7. Charging routines – Private drivers

FÉCNICO

ISBOA

- Private drivers charge mainly at home (92%), during the night;
- When charging in the street, drivers do it during the day, and 20% also at night time, using mainly slow charging points;

EVS 27 Results - Interviews 1.8. Charging routines – Fleet drivers

Charging patterns	
Doesn't charge EV after using it	42%
Work (one day per week use)	33%
Work (use EV several days a week)	42%
Home (use EV several days a week)	17%
Street	25%
Slow charge	100%
Fast charge	67%

FCNICO

- Fleet drivers don't charge the EV after using it (42%);
- When they charge, they do it mainly at the working place;
- In the street, drivers charge mainly at slow charging stations.

1.9. EV improvements

Improvements	Private users	Fleet users
Autonomy	77%	67%
Charging infrastructure	69%	33%
Design	8%	25%
Purchase cost	8%	25%
Vehicle performance	0%	17%
Vehicle management	0%	8%
Vehicle promotion	0%	8%

- Autonomy and charging infrastructure mentioned as main improvements by private drivers:
- Fleet drivers also mention autonomy and infrastructure as a necessary improvement, but refer also vehicle design and purchase cost.

Results – On-board diary data

Days	km	Trips	Charges	kWh
1243	49786	5132	831	8529

- A total of 1243 days were monitored;
- Drivers made 5131 trips, travelling ≈ 50000 km;
- 831 charges were made, corresponding to 8529 kWh charged.

evs 27 2.1. Mobility Profile

Results – On-board diary data

	km/day	Trips/day	Charges/day	kWh/day	kWh/km	kWh/trip	kWh/charge
Average EV	39.9	3.5	0.6	6.3	0.157	2.2	10.3
STDEV EV	24.4	2.3	0.2	3.1	0.1	1.2	3.3
Sample (90% CL, 20% Deviation)	21.05	24.58	8.19	13.87	6.42	16.66	5.71

- Participants made on average 3.5 trips per day and travel 39.9 km per day.
- Drivers made on average 0.6 charges per day consuming 6.3 kWh a day, corresponding to 0.157 kWh per km travelled.
- On average, drivers charged 10.3 kWh per charge.
- A larger sample is needed in order to have more robust results.

- Tank-to-Wheel (TTW)
- Well-to-Tank (WTT)
- Comparison between technologies: EV, ICE Gasoline, ICE Diesel

Results - On-board
diary data2.2. Environmental impacts - Energy consumption

- The EV has a smaller contribution (0.62 MJ/km) in the TTW stage than ICE Gas and ICE Diesel, 1.96 and 1.67 MJ/km, respectively;
- The opposite is observed when considering the WTT stage, which incorporates the electricity production values for Portugal in 2007;
- Overall, the EV presents lower WTW results, with an energy consumption of 1.30 MJ/km, while ICE
 Gas presents higher consumption results of 2.23 MJ/km.

CVS27Results – On-board
diary data2.2. Environmental impacts – CO2 emissions

FCNICO

ISBOA

- In TTW electricity input is zero;
- However, in WTT electricity contribution is substantially higher (63 g/km) than that of fossil fuels,
 25 g/km for gasoline and 24 g/km for diesel internal combustion engines.

- Economic and environmental aspects associated with the EV are referred as main factors influence purchase for private drivers;
- Fleet drivers introduce the **image status factor** as a reason for using EVs in companies;
- Autonomy and charging infrastructure stand out as main disadvantages;
- EV impacted daily routines and driving style;
- Private drivers charge mainly at home and use street charging occasionally (plan trips and determine charging routine);
- When compared to the conventional technology, in a life cycle analysis approach, EV reveals considerable reductions in energy consumption and CO₂ emissions.

- The authors would like to acknowledge the sponsors of the research: EMEL – Lisbons' municipalmobility and parking company
- Thanks are also due to Fundação para a Ciência e Tecnologia for the PhD and Post-Doctoral financial support (SFRH / BD / 80500 / 2011; SFRH / BPD / 79684 / 2011)

