

The 27th INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION.

> Barcelona, Spain 17th-20th November 2013

Development of an Advanced 2D -Thermal Model for Large size Lithium-ion Pouch Cells

Ahmadou Samba^{1,2}, Noshin Omar², Hamid Gualous¹ Peter Van den Bossche², Joeri Van Mierlo², Tala Ighil Boubekeur¹

¹ Université de Caen Basse Normandie, 50130 Cherbourg, France

² Vrije Universiteit Brussel, Pleinlaan 2, Brussel, 1050, Belgium

- 1. Introduction
- 2. Methodology
- 3. Results and discussion
- 4. Summary

- In EVs, large format of Li-ions cell are subjected to abuse stress regimes
- Significant temperature Increase

thermal runaway

- Decrease of lifetime and performance
- Less Heterogeneous heat distribution In large cell,
- Need for thermal model: cooling system and optimized cell design

EVS 27 2. Methodology: Geometry

evs 27 ². Methodology: Equations

Electrode and tabs domains:

$$k \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right] + q_g = \rho. C_p \frac{\partial T}{\partial t}$$

Electrode

$$q_g = \frac{1}{V_{bat}} \left[RI^2 + \left(T \left[\frac{dE}{dT} \right] \right) I \right]$$

Internal resistance
Irreversible heat
Reversible heat

$$R' = \rho' \frac{l}{S}$$

Tab resistance
Tab resistance

Case domains:

$$k\left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2}\right] = \rho \cdot C_p \frac{\partial T}{\partial t}$$

2. Methodology: Equations

□ heat flux from battery surface to the surrounding:

$$q_{s} = -k\left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y}\right)|_{boundaries} = (h_{conv} + h_{rad})(T - T_{a})$$

$$h_{rad} = \epsilon \sigma (T^2 + T_a^2) (T + T_a)$$

Radiative heat transfer coefficient

hconv

convective heat transfer coefficient

2. Methodology: heat source

asso

□ Resistance: HPPC characterization test

The experiment is repeated at different current rate

2. Methodology: heat source

□ Entropy coefficient measurement

Entropy coefficient at 0% of SoC

At 0% of SoC , Open circuit potential at different temperature

-difference due to hysteresis -endothermic or exothermic according to the It-rate

dE dT

EVS 27 2. Methodology thermal parameters 2. Methodology:

Fira Barcelona

European

Commission

Thermal conductivity and capacitance estimation of the electrode domain

EVS 27 2. Methodology: thermal parameters

Thermal conductivity and capacitance estimation of the electrode domain

-From curve fitting tool method

	C _p (J kg ⁻¹ K ⁻¹)	R _{th1} (°C W ⁻¹)	R _{th} (°C W ¹)	R _{∞n} (°C W ⁻¹)	h (Wm ⁻² K ⁻¹)	k ₁ (Wm ⁻¹ K ⁻¹)	k (Wm ⁻¹ K ⁻¹)
5 I.	645,01	0,62	0,89	0,95	30,41	0,3	28,13
It	636,05	0,65	0,81	1,14	25,21	0,28	32,68
I,	575,03	0,66	0,74	1,21	23,79	0,28	33,50

3. Results

ANSYS software

Discharge at 4It

Thermal distributions $\Delta T < 6$ ° C

□ Influence of cooling system at 1It charge rate

Organized by 11/1

Fira Barcelona

avele

Hosted by

In collaboration with

Supported by

