

The 27th INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION.

Barcelona, Spain 17th-20th November 2013

Cycle Life Characterisation of Large Format Lithium Ion Cells

Raghavendra Arunachala

Research Associate

raghavendra.arunachala@tum-create.edu.sg

TUM CREATE, Singapore

- Motivation
- Cell ageing
- Experimental
- Results and discussion
- Conclusion and future work

- Large format cells are popular in EV Applications
 - To meet high energy and power requirements
 - Fewer connections and wiring in battery pack
 - Lesser number of cells to monitor
 - Better volumetric space utilisation
- Limited studies have been reported on their ageing mechanism and lifetime prediction

BOL Beginning of life : Fresh cell

EOL End of life : Loss of performance and lifetime

Experimental: Cell Details & Test Conditions

Manufacturer: Dow Kokam High Power 63 Ah Chemistry: Li[NiMnCo]O₂ | Graphite Nominal Voltage: 3.7 VInternal Resistance: $0.6 \text{ m}\Omega$

C Ra	Temperature	
Discharge	Charge	(°C)
1C	1C	25
2C	1C	25
3C	1C	25
1C	3C	25
1C	1C	40

XXX* = 3 cells per test condition to get statistically reliable data

Experimental: Flowchart

- Initial checkup
- Cycle ageing test
 - 100% DOD, CC CV charging, CC discharging
 - Upper cut off voltage 4.2 V
 - Lower cut off voltage 2.7 V
 - Cut off current 3A
- Characterisation test
 - Discharge capacity
 - Hybrid pulse power characterisation (HPPC)
 - Electrochemical impedance spectroscopy (EIS)

Discharge capacity (1 C Rate) measured at 25°C

Cut off voltage: 4.2 V - 2.7 V Cut

off current: 3A

Results & Discussion: of Power Capability

Pulse Power measured

at 25°C

$$P_{DCH} = \frac{2}{9} \frac{V_{OCV}^2}{R_{DCH_1} 10s}$$

Results & Discussion: Loss of Power Capability

Low discharge rate showed more power fade

CONSResults & Discussion:EIS Measurements

impedance spectra

Results & Discussion: Measurements

evs 27

Cycles $\uparrow \longrightarrow R_i \uparrow R_w \uparrow$

EIS

 Significant increase in the mid frequency impedance mainly caused by growth of SEI layer

Results & Discussion: Temperature Measurements

Temperature profile of 3C charge cycling

Results & Discussion: Temperature Measurements

	Sensor 1		Sensor 2		Sensor 3		Sensor 4	
Cycle No.	1	600	1	600	1	600	1	600
Avg. Temp (°C)	29.250	31.078	29.033	31.221	29.80	31.449	29.583	31.592
Min Temp (°C)	25.149	26.61	24.914	26.792	25.176	26.699	24.941	26.881
Max Temp (°C)	37.996	43.476	37.035	43.011	38.87	43.537	37.986	43.083

- Cell temperature increased with cycle number due to impedance rise
- Increased cooling power demand due to more heat generation
- Greater temperature inhomogeneity in fresh cells compared to aged cells

Results & Discussion: & RUL

- Decreasing Capacity
- Increasing Impedance

$$C_{EOL} = 0.8 * C_{BOL}$$

$$R_{EOL} = 2 * R_{BOL}$$

$$SOH_C (i) = \left(1 - \frac{C_{BOL} - C(i)}{C_{BOL}} * \frac{1}{0.2}\right)$$

$$SOH_R (i) = \left(1 - \frac{R(i) - R_{BOL}}{R_{BOL}} * \frac{1}{2}\right)$$

$$0 \le SOH \le 1$$

$$RUL(i) = f(cf(i), pf(i))$$

SOH

- Cell capacities remained constant till 600 cycles
- Pulse power capability reduced with increase in cycle number
- R_w and R_i were the main contributors to ageing
- Average cell temperature increased as the cell aged, due to impedance rise
- Further studies required : Postmortem analysis, similar tests on short format cells

CALCENTING STATES OF STAT

